Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Physiol Biochem ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658493

RESUMO

Thermal variations due to global climate change are expected to modify the distributions of marine ectotherms, with potential pathogen translocations. This is of particular concern at high latitudes where cold-adapted stenothermal fish such as the Notothenioids occur. However, little is known about the combined effects of thermal fluctuations and immune challenges on the balance between cell damage and repair processes in these fish. The aim of this study was to determine the effect of thermal variation on specific genes involved in the ubiquitination and apoptosis pathways in two congeneric Notothenioid species, subjected to simulated bacterial and viral infections. Adult fish of Harpagifer bispinis and Harpagifer antarcticus were collected from Punta Arenas (Chile) and King George Island (Antarctica), respectively, and distributed as follows: injected with PBS (control), LPS (2.5 mg/kg) or Poly I:C (2 mg/kg) and then submitted to 2, 5 and 8 °C. After 1 week, samples of gills, liver and spleen were taken to evaluate the expression by real-time PCR of specific genes involved in ubiquitination (E3-ligase enzyme) and apoptosis (BAX and SMAC/DIABLO). Gene expression was tissue-dependent and increased with increasing temperature in the gills and liver while showing an opposite pattern in the spleen. Studying a pair of sister species that occur across the Antarctic Polar Front can help us understand the particular pressures of intertidal lifestyles and the effect of temperature in combination with biological stressors on cell damage and repair capacity in a changing environment.

2.
Sci Total Environ ; 921: 170941, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360303

RESUMO

The Southern Ocean and the Antarctic Circumpolar Current create environmental conditions that serve as an efficient barrier to prevent the colonization of non-native species (NNS) in the marine ecosystems of Antarctica. However, warming of the Southern Ocean and the increasing number of transport opportunities are reducing the physiological and physical barriers, increasing the chances of NNS arriving. The aim of this study was to determine the limits of survival of the juvenile mussels, M. chilensis, under current Antarctic conditions and those projected under climate change. These assessments were used to define the mussels potential for establishment in the Antarctic region. Experimental mussels were exposed to four treatments: -1.5 °C (Antarctic winter), 2 °C (Antarctic summer), 4 °C (Antarctic projected) and 8 °C (control) for 80 days and a combination of physiological and transcriptomics approaches were used to investigate mussel response. The molecular responses of mussels were congruent with the physiological results, revealing tolerance to Antarctic winter temperatures. However, a higher number of regulated differentially expressed gene (DEGs) were reported in mussels exposed to Antarctic winter temperatures (-1.5 °C). This tolerance was associated with the activation of the biological processes associated with apoptosis (up regulated) and both cell division and cilium assembly (down regulated). The reduced feeding rate and the negative scope for growth, for a large part of the exposure period at -1.5 °C, suggests that Antarctic winter temperatures represents an environmental barrier to M. chilensis from the Magellanic region settling in the Antarctic. Although M. chilensis are not robust to current Antarctica thermal conditions, future warming scenarios are likely to weaken these physiological barriers. These results strongly suggest that the West Antarctic Peninsula could become part of Mytilus distributional range, especially with dispersal aided by increasing maritime transport activity across the Southern Ocean.


Assuntos
Mytilus , Água do Mar , Animais , Mytilus/fisiologia , Ecossistema , Temperatura , Regiões Antárticas , Oceanos e Mares
3.
Mar Pollut Bull ; 195: 115549, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37729690

RESUMO

Anthropogenically induced global climate change has caused profound impacts in the world ocean. Climate change related stressors, like ocean acidification (OA) and warming (OW) can affect physiological performance of marine species. However, studies evaluating the impacts of these stressors on algae-herbivore interactions have been much more scarce. We approached this issue by assessing the combined impacts of OA and OW on the physiological energetics of the herbivorous snail Tegula atra, and whether this snail is affected indirectly by changes in biochemical composition of the kelp Lessonia spicata, in response to OA and OW. Our results show that OA and OW induce changes in kelp biochemical composition and palatability (organic matter, phenolic content), which in turn affect snails' feeding behaviour and energy balance. Nutritional quality of food plays a key role on grazers' physiological energetics and can define the stability of trophic interactions in rapidly changing environments such as intertidal communities.


Assuntos
Kelp , Água do Mar , Animais , Água do Mar/química , Herbivoria/fisiologia , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Ecossistema , Mudança Climática , Caramujos , Oceanos e Mares , Aquecimento Global
4.
Mar Pollut Bull ; 194(Pt B): 115380, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37562239

RESUMO

Human settlements within the Antarctic continent have caused significant coastal pollution by littering plastic. The present study assessed the potential presence of microplastics in the gastrointestinal tract of the Antarctic fish Harpagifer antarcticus, endemic to the polar region, and in the sub-Antarctic fish Harpagifer bispinis. H. antarcticus. A total of 358 microfibers of multiple colors were found in 89 % of H. antarcticus and 73 % of H. bispinis gastrointestinal track. A Micro-FTIR analysis characterized a sub-group (n = 42) of microfibers. It revealed that most of the fibers were cellulose (69 %). Manmade fibers such as microplastics polyethylene terephtalate, acrylics, and semisynthetic/natural cellulosic fibers were present in the fish samples. All the microfibers extracted were textile fibers of blue, black, red, green, and violet color. Our results suggest that laundry greywater discharges of human settlements near coastal waters in Antarctica are a major source of these pollutants in the Antarctic fish.


Assuntos
Perciformes , Poluentes Químicos da Água , Animais , Humanos , Microplásticos , Plásticos/análise , Regiões Antárticas , Têxteis , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
5.
Mar Environ Res ; 188: 105979, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37099993

RESUMO

Global warming is threatening marine Antarctic fauna, which has evolved in isolation in a cold environment for millions of years. Facing increasing temperatures, marine Antarctic invertebrates can either tolerate or develop adaptations to these changes. On a short timescale, their survival and resistance to warming will be driven by the efficiency of their phenotypic plasticity through their capacity for acclimation. The current study aims at evaluating the capacity for acclimation of the Antarctic sea urchin Sterechinus neumayeri to predicted ocean warming scenarios (+2, RCP 2.6 and + 4 °C, RCP 8.5, IPCC et al., 2019) and deciphering the subcellular mechanisms underlying their acclimation. A combination of transcriptomics, physiological (e.g. growth rate, gonad growth, ingestion rate and oxygen consumption), and behavioral-based approaches were used on individuals incubated at 1, 3 and, 5 °C for 22 weeks. Mortality was low at warmer temperatures (20%) and oxygen consumption and ingestion rate seemed to reach a stable state around 16 weeks suggesting that S. neumayeri might be able to acclimate to warmer temperatures (until 5 °C). Transcriptomic analyses highlighted adjustments of the cellular machinery with the activation of replication, recombination, and repair processes as well as cell cycle and division and repression of transcriptional and signal transduction mechanisms and defense processes. These results suggest that acclimation to warmer scenarios might require more than 22 weeks for the Antarctic Sea urchins S. neumayeri but that projections of climate change for the end of the century may not strongly affect the population of S. neumayeri of this part of the Antarctic.


Assuntos
Aclimatação , Mudança Climática , Animais , Humanos , Regiões Antárticas , Temperatura , Ouriços-do-Mar/fisiologia
6.
J Therm Biol ; 112: 103496, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36796881

RESUMO

Sea urchin's survival may depend on their capacity to recover proper orientation rapidly and effectively after inversion, enabling escape from predator and preventing desiccation. This righting behavior has been used as a repeatable and reliable indicator to assess echinoderms performance across environmental conditions, including thermal sensitivity and thermal stress. The current study aims at evaluating and comparing the thermal reaction norm for righting behavior (time for righting (TFR) and capacity to self-right) of three common sea urchins from high latitude, the Patagonian sea urchins Loxechinus albus and Pseudechinus magellanicus, and the Antarctic sea urchin Sterechinus neumayeri. In addition, to infer the ecological implications of our experiments, we compared laboratory-based and in situ TFR of these three species. We observed that populations of the Patagonian sea urchins L. albus and P. magellanicus presented similar trend of righting behavior, overly accelerating with increasing temperature (from 0 to 22°C). Little variations and high inter-individual variability were observed below 6°C in the Antarctic sea urchin TFR, and righting success strongly decreased between 7 and 11°C. For the three species, TFR was lower in in situ experiments compared to the laboratory. Overall, our results suggest that the populations of Patagonian sea urchin exhibit a wide thermal tolerance and, based on S. neumayeri's TFR, aligning with the narrow thermal tolerance of Antarctic benthos. Finally, the differences between laboratory and in situ experiments highlights the importance of considering the complexity of marine environments for future predictions.


Assuntos
Ouriços-do-Mar , Animais , Regiões Antárticas , Temperatura
7.
Fish Shellfish Immunol ; 130: 391-408, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126838

RESUMO

Rising ocean temperatures due to climate change combined with the intensification of anthropogenic activity can drive shifts in the geographic distribution of species, with the risks of introducing new diseases. In a changing environment, new host-pathogen interactions or changes to existing dynamics represent a major challenge for native species at high latitudes. Notothenioid fish constitute a unique study system since members of this group are found inside and outside Antarctica, are highly adapted to cold and particularly sensitive to temperature increments. However, data about their immune response remains scarce. Here, we aimed to evaluate the innate immune response under thermal stress in two species of Notothenioid fish, Harpagifer antarcticus and Harpagifer bispinis. Adult individuals from both species were collected on King George Island (Antarctica), and Punta Arenas (Chile), respectively. Specimens were assigned to a control group or injected with one of two agents (LPS and Poly I:C) to simulate either a bacterial or viral infection, and subjected to three different temperatures 2, 5 and 8 °C for 1 week. In parallel, we established leukocytes primary cell cultures from head kidney, which were also subjected to the immunostimulants at the same three temperatures, and incubated for 0.5, 1, 3, 6, 12, 24, and 48 h. We evaluated the relative gene expression of genes involved in the innate immune response (TLR1, TLR3, NF-kB, MYD88, IFNGR e IL-8) through real time qPCR. We found differences between species mainly in vivo, where H. antarcticus exhibited upregulation at high temperatures and H. bispinis seemed to have reached their physiological minimum at 2 °C. Although temperature had a strong effect during the in vivo assay for both species, it was negligible for primary cell cultures, which responded primarily to condition and time. Moreover, while leukocytes responded with fluctuations across time points, in vivo both species manifested strong and clear patterns of gene expression. These results highlight the importance of evaluating the effect of multiple stressors and set a precedent for future research.


Assuntos
Lipopolissacarídeos , Perciformes , Adjuvantes Imunológicos/metabolismo , Animais , Regiões Antárticas , Peixes/metabolismo , Imunidade Inata , Interleucina-8 , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Perciformes/genética , Poli I-C/farmacologia , Temperatura , Receptor 1 Toll-Like/metabolismo , Receptor 3 Toll-Like/metabolismo
8.
PLoS One ; 17(7): e0270825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35797370

RESUMO

Oysters and blue mussels are important hydrobiological resources for aquaculture. In Chile, they are farming on the Chiloé island, where around 18% of the world's mussels are produced, however, their nutritional dynamics are largely unknown. For this reason, the objective of this study was to determine the proximal biochemical composition and the fatty acid profile in the Chilean oyster (Ostrea chilensis), the Pacific oyster (Crassostrea gigas) and the Chilean mussel (Mytilus chilensis), to perform an intra and interspecific comparison. Shellfish sampled in winter were characterized by a high protein content, followed by medium values for lipid content and a low carbohydrate content compared to similar species in Europe. Also, oysters and mussels were found to be rich in omega-3 long chain polyunsaturated fatty acid (n-3 LC-PUFA), so they can be considered excellent functional food option for a healthy human diet. Their high contribution of n-3 LC-PUFA ranged between 5.2-12.9 µg FA mg-1 dry weight with high n-3/n-6 ratios, which depends on both the species and the on-growing location. Both taxa can be considered a plausible option to promote a healthy diet of marine origin in future generations. Also, these results could benefit the projection and development of aquaculture of these mollusks.


Assuntos
Bivalves , Crassostrea , Mytilus , Ostrea , Animais , Bivalves/química , Chile , Ácidos Graxos , Humanos
9.
Mar Environ Res ; 177: 105634, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35483118

RESUMO

Juvenile oysters (Ostrea chilensis) from two populations (Quempillén estuary and Pullinque bay) were exposed to a toxic diet containing paralytic shellfish toxins (PST), produced by Alexandrium catenella, followed by a detoxification period. Feeding behaviour, toxin profile, dynamics of intoxication/detoxification, and survival were evaluated over the entire experimental period. Both populations reduced their feeding rates during the 30-day exposure to the toxic diet. This negative effect was reversible when the diet was switched to the non-toxic one. Oysters from the estuary accumulated PST more rapidly than the population from the bay, suggesting their increased ability to cope with more adverse conditions. Both populations showed low detoxification capacity. Survival was significantly higher in oysters from the estuary, compared to those from the bay. Due to the increasing frequency and intensity of A. catenella blooms in southern Chile, it is necessary to better understand the responses of O. chilensis in different environments. This is important not only because of the ecological and commercial relevance of the bivalve, but also in consideration of expected climate change scenarios, where the new environmental conditions could favour the frequency and intensity of harmful algal bloom events.


Assuntos
Dinoflagelados , Ostrea , Animais , Proliferação Nociva de Algas , Toxinas Marinhas/toxicidade , Frutos do Mar/análise
10.
Genet Mol Biol ; 45(1): e20210214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35266950

RESUMO

Ostrea chilensis (Küster, 1844), the flat oyster, is native to Chile and New Zealand. In Chile, it occurs in a few natural beds, from the northern part of Chiloé Island (41 ºS) to the Guaitecas Archipelago (45 ºS). This bivalve is slow growing, broods its young, and has very limited dispersal potential. The Ostrea chilensis fishery has been over-exploited for a number of decades such that in some locations oysters no longer exist. The aim of this study was to study the genetic diversity of the Chilean flat oyster along its natural distribution to quantify the possible impact of the dredge fishery on wild populations. The genetic structure and diversity of Ostrea chilensis from six natural beds with different histories of fishing activity were estimated. Based on mitochondrial (Cytb) and nuclear (ITS1) DNA sequence variation, our results provide evidence that genetic diversity is different among populations with recent history of wild dredge fishery efforts. We discuss the possible causes of these results. Ultimately, such new information may be used to develop and apply new management measures to promote the sustainable use of this valuable marine resource.

11.
Sci Total Environ ; 806(Pt 4): 150943, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655637

RESUMO

Physiological comparisons are fundamental to quantitative assessments of the capacity of species to persist within their current distribution and to predict their rates of redistribution in response to climate change. Yet, the degree to which physiological traits are conserved through evolutionary history may fundamentally constrain the capacity for species to adapt and shift their geographic range. Taxa that straddle major climate transitions provide the opportunity to test the mechanisms underlying evolutionary constraints and how such constraints may influence range shift predictions. Here we focus on two abundant and shallow water nacellid limpets which have representative species on either side of the Polar front. We test the thermal thresholds of the Southern Patagonian limpet, Nacella deaurata and show that its optimal temperatures for growth (4 °C), activity (-1.2 to -0.2 °C) and survival (1 to 8 °C) are mismatched to its currently experienced annual sea surface temperature range (5.9 to 10 °C). Comparisons with the congeneric Antarctic limpet, N. concinna, reveal an evolutionary constraint on N. deaurata physiology, with overlapping thermal capacities, suggesting that a cold climate legacy has been maintained through the evolution of these species. These physiological assessments predict that the South American range of N. deaurata will likely decline with continued warming. It is, however, one of the first species with demonstrated physiological capacity to successfully colonize the cold Southern Ocean. With the expected increase in opportunities for transport within high southern latitudes, N. deaurata has the potential to establish and drive ecological change within the shallow Southern Ocean.


Assuntos
Gastrópodes , Animais , Regiões Antárticas , Mudança Climática , Temperatura Baixa , Temperatura
12.
J Therm Biol ; 99: 103021, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34420652

RESUMO

Maximum and minimum Critical thermal limits (CTMax and CTMin) have been studied extensively to assess thermal tolerance in ectotherms by means of ramping assays. Notothenioid fish have been proposed as particularly sensitive to temperature increases related to global climate change. However, there are large gaps in our understanding of the thermal responses of these extreme cold-adapted fish in assays with heating rates. We evaluated the effects of two commonly used heating rates (0.3 and 1 °C/min) on the cellular stress responses in the intertidal Antarctic fish Harpagifer antarcticus immediately after CTMax was reached, and at 2 and 4 h of recovery time in ambient water. We compared CTMax values, the relative transcript expression of genes relvant to heat shock response (Hsc70, Hsp70, Grp78), hypoxia (Hif1-α, LDHa, GR), ubiquitination (Ube2), and apoptosis (SMAC/DIABLO), and five plasma parameters - glucose, lactate, total protein, osmolality and cortisol. CTMax values between the two heating rates are not significantly different, and both rates elicited a similar stress response at molecular and physiological levels. We found a lack of up-regulated response of heat shock proteins, consistent with other Antarctic notothenioids. The general transcriptional pattern trended to downregulation, which was more evident in the slower 0.3 °C/min rate, and instances of upregulation were mainly related to ubiquitination. The faster 1 °C/min rate, rarely used for Antarctic fish, can be suitable for studying cold-adapted stenothermic fish without overestimating thermal tolerance or inducing damage from longer heat exposure.


Assuntos
Peixes/fisiologia , Resposta ao Choque Térmico , Estresse Fisiológico , Animais , Mudança Climática , Feminino , Masculino , Concentração Osmolar
13.
Toxicon ; 195: 48-57, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33722633

RESUMO

Blooms of the dinoflagellate Alexandrium catenella, which produces Paralytic Shellfish Toxins (PST), generate serious socio-economic consequences for mariculture in Chile, especially for the production of Mytilus chilensis and other bivalves. Palliative strategies, such as the depuration of mussels in enriched water with chitosan offer encouraging prospects against the advance of contaminated areas and toxin persistence. Adult mussels were fed with A. catenella for 20 days and then were allowed to depurate using chitosan as facilitator, for the same period. Intoxicated mussels showed a reduction in feeding activity and rapid PST accumulation in 20 days (C = 451.5t + 1,673.6, R2 = 0.55 p = 0.008). Not enough evidence was found to indicate a positive effect of chitosan in mussel depuration after 20 days (C = -311.1t + 8,462.4, R2 = 0.8 p = 0.001). At the end of the study, toxicity was higher than 800 µg STX eq kg-1. C2 and GTX4 analogues were the most abundant in the dinoflagellate strain, while C2 and C1 were the most accumulated in mussels. The presence of C1 was notorious during depuration, as the persistence of GTX2,3. GTX5 was only detected in A. catenella, while STX was only present in mussels. Mussel sensitivity to the presence of the toxic dinoflagellate was observed in the present study. The biotransformation, selective elimination and epimerization processes were deduced from intoxication and depuration experiments.


Assuntos
Quitosana , Dinoflagelados , Toxinas Marinhas/toxicidade , Mytilus , Animais , Chile , Quitosana/toxicidade , Frutos do Mar/análise , Intoxicação por Frutos do Mar
14.
Fish Physiol Biochem ; 47(2): 533-546, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33523350

RESUMO

Thermal and saline variations of the Southern Ocean are important signs of climate change which can alter the physiological responses of stenotic species residing at high latitudes. Our study aimed to evaluate the cellular stress response (CSR) of Harpagifer antarcticus subjected to increased ambient temperature and decreased salinity. The fish were distributed in different thermal (2, 5, 8, 11, and 14 °C) and saline (23, 28, and 33 psu) combinations for 10 days. We used qPCR analysis to evaluate the transcription of genes involved in the thermal shock response (HSP70, HSC70, HSP90, and GRP78), ubiquitination (E2, E3, ubiquitin, and CHIP), 26S proteasome complex (PSMA2, PSMB7, and PSMC1), and apoptosis (SMAC/Diablo and BAX) in the liver and gill. The expression profiles were tissue-specific and mainly dependent on temperature rather than salinity in the gill; meanwhile, in the liver, both conditions modulated the expression of these genes. Transcription of markers involved in the heat shock response was much higher in the liver than in the gill and was higher when salinity decreased and the temperature increased. Similarly, the genes involved in the ubiquitination pathway, 26S complex of the proteasome, and the apoptotic pathway showed the same pattern, being mainly induced in the liver rather than in the gill. This is the first study to show that this Antarctic fish can induce the cellular stress response in their tissues when subjected to these thermal/saline combinations.


Assuntos
Regulação da Expressão Gênica/fisiologia , Perciformes/fisiologia , Salinidade , Estresse Fisiológico , Temperatura , Animais , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo
15.
Sci Rep ; 11(1): 2510, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510300

RESUMO

The capacity of marine organisms to adapt and/or acclimate to climate change might differ among distinct populations, depending on their local environmental history and phenotypic plasticity. Kelp forests create some of the most productive habitats in the world, but globally, many populations have been negatively impacted by multiple anthropogenic stressors. Here, we compare the physiological and molecular responses to ocean acidification (OA) and warming (OW) of two populations of the giant kelp Macrocystis pyrifera from distinct upwelling conditions (weak vs strong). Using laboratory mesocosm experiments, we found that juvenile Macrocystis sporophyte responses to OW and OA did not differ among populations: elevated temperature reduced growth while OA had no effect on growth and photosynthesis. However, we observed higher growth rates and NO3- assimilation, and enhanced expression of metabolic-genes involved in the NO3- and CO2 assimilation in individuals from the strong upwelling site. Our results suggest that despite no inter-population differences in response to OA and OW, intrinsic differences among populations might be related to their natural variability in CO2, NO3- and seawater temperatures driven by coastal upwelling. Further work including additional populations and fluctuating climate change conditions rather than static values are needed to precisely determine how natural variability in environmental conditions might influence a species' response to climate change.

16.
J Fish Biol ; 98(6): 1558-1571, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33452810

RESUMO

Global warming is having a significant impact around the world, modifying environmental conditions in many areas, including in zones that have been thermally stable for thousands of years, such as Antarctica. Stenothermal sedentary intertidal fish species may suffer due to warming, notably if this causes water freshening from increased freshwater inputs. Acute decreases in salinity, from 33 down to 5, were used to assess osmotic responses to environmental salinity fluctuations in Antarctic spiny plunderfish Harpagifer antarcticus, in particular to evaluate if H. antarcticus is able to cope with freshening and to describe osmoregulatory responses at different levels (haematological variables, muscle water content, gene expression, NKA activity). H. antarcticus were acclimated to a range of salinities (33 as control, 20, 15, 10 and 5) for 1 week. At 5, plasma osmolality and calcium concentration were both at their lowest, while plasma cortisol and percentage muscle water content were at their highest. At the same salinity, gill and intestine Na+ -K+ -ATPase (NKA) activities were at their lowest and highest, respectively. In kidney, NKA activity was highest at intermediate salinities (15 and 10). The salinity-dependent NKA mRNA expression patterns differed depending on the tissue. Marked changes were also observed in the expression of genes coding membrane proteins associated with ion and water transport, such as NKCC2, CFTR and AQP8, and in the expression of mRNA for the regulatory hormone prolactin (PRL) and its receptor (PRLr). Our results demonstrate that freshening causes osmotic imbalances in H. antarcticus, apparently due to reduced capacity of both transport and regulatory mechanisms of key organs to maintain homeostasis. This has implications for fish species that have evolved in stable environmental conditions in the Antarctic, now threatened by climate change.


Assuntos
Perciformes , ATPase Trocadora de Sódio-Potássio , Animais , Regiões Antárticas , Brânquias/metabolismo , Osmorregulação , Perciformes/metabolismo , Salinidade , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
17.
Mar Pollut Bull ; 162: 111834, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33203603

RESUMO

Microplastic particles (MP) uptake by marine organisms is a phenomenon of global concern. Nevertheless, there is scarce evidence about the impacts of MP on the energy balance of marine invertebrates. We evaluated the mid-term effect of the microplastic ingestion at the current higher environmental concentrations in the ocean on the energy balance of the giant mussel Choromytilus chorus. We exposed juvenile mussels to three concentrations of microplastics (0, 100, and 1000 particles L-1) and evaluated the effect on physiology after 40 days. The impacts of MP on the ecophysiological traits of the mussels were minimum at all the studied concentrations. At intermediate concentrations of MP, Scope for Growth (SFG) had little impact. Other relevant key life-history and physiological processes, such as size and metabolism, were not affected by microplastics. However, individuals treated with MP presented histopathological differences compared to control group, which could result in adverse health effects for mussels.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Monitoramento Ambiental , Humanos , Plásticos , Alimentos Marinhos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
18.
Sci Total Environ ; 748: 142448, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33113697

RESUMO

In the Southern Ocean, warming and freshening are expected to be prominent signals of climate change and the reduced ability of Antarctic marine organisms to cope with changing environmental conditions could challenge their future survival. The Antarctic limpet Nacella concinna is a macroinvertebrate of rocky ecosystems, which occurs in high densities in the shallow subtidal zone. Subtidal individuals were exposed to a combination of temperatures (1, 4, 8, 11, 14 °C) and salinities (20 and 30 psu) for a 60-day period. A drastic increment in mortality was observed with seawater warming, showing that N. concinna is highly stenothermal, with limited ability to survive at temperatures warmer than 4 °C, although there was some degree of acclimation at 4 °C and ambient salinity (30 psu). This study confirmed the stenohaline characteristic of this species, with mortality reaching 50% and lower scope for growth at low salinity (20 psu) even at the control temperature (1 °C). At the sub-cellular level, limpets' low tolerance to out-of range salinity is illustrated by the activation of cell remodelling processes whereas the down-regulation of chaperones proteins and plasma membrane ATPase suggest that under the combination of warming and freshening N. concinna experiences a severe level of stress and devote much of its energy to somatic maintenance and survival. The drastic effect observed can be explained by its subtidal origin, an environment with more stable conditions. The surviving individuals at 1 °C and lowered salinity (20 psu) were either more tolerant or showing signs of acclimation after 60 days, but the combination of warming and freshening have a greater combined stress. Projections of climate change for end of the century for this part of the Antarctic can, therefore, result in a significant diminution of the subtidal population of N. concinna, affecting ecological interactions and diversity of the food web.


Assuntos
Ecossistema , Gastrópodes , Animais , Regiões Antárticas , Humanos , Oceanos e Mares , Água do Mar , Temperatura , Transcriptoma
19.
Mar Environ Res ; 162: 105154, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32998067

RESUMO

Anthropogenic CO2 emissions have led to ocean acidification and a rise in the temperature. The present study evaluates the effects of temperature (10, 15 and 20 °C) and pCO2 (400 and 1200 µatm) on the early development and oxygen consumption rate (OCR) of the sea louse Caligus rogercresseyi. Only temperature has an effect on the hatching and development times of nauplius I. But both factors affected the development time of nauplius II (

Assuntos
Copépodes , Ftirápteros , Animais , Dióxido de Carbono/toxicidade , Concentração de Íons de Hidrogênio , Água do Mar , Temperatura
20.
Sci Total Environ ; 728: 138850, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32570334

RESUMO

In order to develop powerful predictions on the impact of climate change on marine organisms, it is critical to understand how abiotic drivers such as temperature can directly and indirectly affect marine organisms. Here, we evaluated and compared the physiological vulnerability of the leading-edge populations of two species of sea urchins Loxechinus albus and Pseudechinus magellanicus in response to predicted ocean warming and food limitation. After exposing sea urchins to a 60-day experimental period to contrasting temperature (1 °C, 7 °C and 14 °C corresponding respectively to the actual average summer temperature in Antarctica, the control treatment temperature and the predicted future temperature in the Strait of Magellan) and diet levels (ad libitum or food limitation), sea urchin stress tolerance was assessed. Sea urchins' physiology was measured at the organismal and sub-cellular level by studying the organisms energy balance (behavior, growth, gonad index, ingestion rate, O2 uptake, energy reserves) and the expression of genes associated with aerobic metabolism. Our results showed that at their distribution edge, and despite their distinct geographical repartition, both species might be resilient to ocean warming. However, the combination of ocean warming and food limitation reduced the stress tolerance of sea urchins. In a warming ocean, another strategy could be to migrate toward the pole to a cooler environment but incubation at 1 °C resulted in a diminution of both species' aerobic scope. Overall, if these engineer species are unable to acclimate to food limitation under future climate, population fitness could be affected with ecological and economic consequences.


Assuntos
Mudança Climática , Ouriços-do-Mar , Animais , Regiões Antárticas , Oceanos e Mares , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...